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Subject Background

Steam is the largest digital games platform for PCs. As of

February 2022, it’s storefront contains 10,696 games
[source: steampowered.com]

Fach game has a store page was various pieces of
information about the game, such as genre or price.

Importantly, Steam also features a system of user reviews

which could provide compelling data to game developers
and marketers



Steam’s System of User Reviews
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Dig, fight, explore, build! Nothing is impossible in this
action-packed adventure game. Four Pack also
available!

Overwhelmingly Positive

i

In Spacebase DF-9, you'll build a home among the
stars for a motley population of humans and aliens as
they go about their daily lives. Mine asteroids,
discover derelicts, and deal with the tribulations of
galactic resettlement in Earth's distant future.



Project Motivations and Goals
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The Data: Sources and Webscraping

Data came from two sources:
Scraping information from store.steampowered.com (steam’s
official website)
data.world’s Steam Game Dataset

In our webscraping phase, we used the webscraping tool ‘scrapy’ to

collect information from each game’s storefront
Further research led us to the Steam Game Dataset which had other

features obtained from steamdb.com, a website which does not support
scraping



The Data: Part II

Each data source had its own advantages/disadvantages
Our own webscraped data had valuable information on user
sentiment about games (obtained from reviews they left) but was
poorly organized due to the structure of tags on steam’s site
Data from data.world was well-organized but didn’t have
sentiment information

Solution: we merged the two datasets by common titles

After merging them together and filtering we were left with 6,939

unique games across 88 features.

AboutText_polarity AboutText_subjectivity ShortDescrip_polarity ShortDescrip_subjectivity DetailedDescrip_polarity DetailedDescrip_subjectivity RelDate_converted

-0.100000 0.300000 0.468750 0.750000 -0.100000 0.300000 736026
0.245726 0.545299 0.099074 0.473148 0.245726 0.545299 736053
0.114394 0.686869 -0.037500 0.591667 0.114394 0.686869 736173

3 games in our dataset and some of the available features
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Grouping related user sentiments
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Data Cleaning/Exploration

Making use of dates

Price by release date

Price by release date
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Price by User Sentiment
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NLP-based sentiment analysis was
used to determine the polarity and
subjectivity of certain features.
The Textblob package uses the
NLTK toolkit to create a
bag-of-words model from text, and
derive averaged pooled sentiment
scores from its individual words
Polarity: [-1, 1] representing
[negative tone, positive tone]
Subjectivity: [0, 1] representing
[not subjective, very subjective]

subjectivity

Feature Engineering: Text Processing
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Feature Selection

Recursive Feature
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Feature Selection (continued)

Recursive Feature XGBoost Feature Random Forest Feature
Elimination (RFE) Importance Importance

Top 10 DLCCount Release Date Recommendation Count

features Package Count Release Date

ranked Controller Support Short Description Polarity Achievement Count
Platform: Linux? Recommendation Count Genre:lsSimulation?
Platform: Mac? Screenshot Count Genre:IsMultiplayer?
PCRegsHaveRec
Category:Multiplayer? Detailed Desc. Subjectivity DetailedDesrip subjectivity
Genre:lsCasual? Achievement Count
Genre:lsStrategy? Detailed Desc. Polarity MacRegsHaveMin?
Genre:lsSimulation? Movie Count Platform:Mac?

Amalgam of top 7 features across the evaluation methods was
chosen to train our models



Graphical summary of feature selection
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Multinomial Logistic Regression [After class rebalancing]
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Linear discriminant analysis (LDA)

Use likelihood function to
create a linear decision
boundary between classes
QDA is more generalizable
but requires too many
parameters to be
estimated for such a
problem

LDA is a foundational
classification tool
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Random forest

Randomized search was used

over:
Number of trees
Tree depth
Features in best split
#Samples to split
internal nodes
#Leaves to splitinternal
nodes
if bootstrapping should
be used
precision recall
Mixed 0.36 0.30
Mostly Positive 0.45 0.40
Negative 0.68 0.71
Overwhelmingly Positive 0.83 0.89
Positive 0.62 0.74
Very Positive 0.41 0.39
accuracy
macro avg 0.56 0.57
weighted avg 0.56 0.57

Average accuracy on holdout
data: 56%



Random Forests: The benefit of upsampling

We used the Synthetic Minority Oversampling Technique
(SMOTE) to oversample our underrepresented classes and
artificially strike class balance in our dataset
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Parameter Value

Neural Network (Design and Results) |, eoons | 50

Batch Size 20

We coded our own neural network e ru
architecture using the keras API for | | 7 01 NeUONS 8
tensorflow

[NN coding, training, testing took up
much of our project time]
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GUI [and Live Demo]

-We used Tkinter to create the interactive GUI featuring a
drop down menu featuring the different models.
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Conclusions and Takeaways

Although difficult, objective metrics can be used to predict subjective
aspects of human life, in this case, user sentiment about video game
Feature selection methods, especially when combined can effectively
reduce data dimensionality, while preserving explainability
Oversampling methods can effectively augment data and help to
re-balance classes

Larger models are not always the answer

When the input space is small, slightly smaller models may be better able
to generalize relationships within the data (random forest)
Systematically training models using Al intuition (and sound data pipeline)
results in better outcomes than relying pretrained architectures and default
values



